
Analyzing Clock Jitter
Using MATLAB

Application Note

www.tektronix.com/accessories/1

The TDS7000 Series digital phosphor oscilloscopes, with open Windows®,

offers the unique advantage of enabling industry-standard analysis and data-

base applications, such as Excel, Mathcad® and MATLAB®, to reside within

the instrument itself.1 The waveform data in the oscilloscope’s acquisition

memory can be exported, then imported to the analysis application, processed

and displayed—all on the same platform.

This document will describe the process of using the TDS7000 Series digital

phosphor oscilloscopes and MATLAB to capture signal data and then to conduct

simple jitter analysis of an NRZ (non-return-to-zero) clock signal. This includes:

How to determine the sample resolution for accurate results

How to move waveform data from the TDS7000 to MATLAB

How to build a simple jitter analysis worksheet

How to use MATLAB to graph the results

Characterizing jitter, whether in the 100 picoseconds (ps) or 100 microseconds (µs) range, can be a time

consuming effort requiring detailed analysis of waveform data. Automating this analysis can result in increased

accuracy, improved efficiency and significantly improved test repeatability as compared to a manual process.

Easy data connectivity using the TDS 7000 Series.

1 The TDS7000 supports a second Windows monitor output which will greatly enhance the oscilloscope’s functionality as an analysis system. The second monitor is not required but enables you

to actively use the scope while simultaneously running a separate application on the second monitor.

¨

Overview of Jitter

What is Jitter?

Jitter has two overlapping definitions:

1. The deviation of a signal transition from its ideal position in time, or…

2. The timing variation from transition to transition

Jitter intervals often fall in the range from tens of ps to a few hundreds of ps.

As clock frequencies reach the 1 GHz range, this seemingly small amount of

jitter error can become a significant portion of the “timing budget,” that is, the

time allotted for a series of logical operations. For example, at the standard

SONET/SDH bit rate of 2.5 Gbits/sec, one unit interval (one data bit) is only

400 ps. The transmitter and receiver components consume most of this budget.

Jitter can make too much of the remaining time unavailable (or at least

uncertain) for necessary operations.

Jitter Characteristics

Let’s take an illustrated look at jitter. Consider the following waveform:

Every time the waveform goes positive above a specified threshold, the data is

a logical one. When the waveform is below the threshold, the data is a logical

zero. Now suppose that when this waveform is sent and received, its timing is

affected as shown below:

Here the signal transition deviates from its ideal position in time and it varies

from transition to transition—the definition of jitter. Where the location of the

edges has changed, because of factors such as noise or other error sources,

the amount of change is the jitter figure, expressed in microseconds (µs),

nanoseconds (ns), or picoseconds (ps), depending on the magnitude of the jitter.

Hysteresis Effects and Guard Bands

When detecting and evaluating jitter, threshold crossings and hysteresis must

be considered. It is common practice to use a “guard band” (essentially a mar-

gin that widens the ideal threshold). Figure 1 shows the threshold to be

crossed and the guard band around it. To avoid registering noise as an actual

change in logic level, a threshold crossing is not considered a valid transition

unless the waveform first goes outside the guard band. Enforcing this rule

ensures that only the true edges (bottom trace in Figure 1) are detected.

Analyzing Clock Jitter Using MATLAB
Application Note

www.tektronix.com/accessories/2

Figure 1: The threshold and hysteresis in clock jitter analysis

Jitter and Your Design

It’s an acknowledged fact in the industry: jitter can affect the stability of any

high-speed circuit design. Increasingly, this realization is reflected in stan-

dards, specifications and compliance guidelines.

A case in point is the USB 2.0 Specification promulgated by the USB

Implementer’s Forum. This document exists to ensure interoperability among

USB-based products from diverse manufacturers and, like other standards, is

essential to the continued success and health of the platform. Consumers will

demand USB 2.0 capability as the amount of readily accessible multimedia

content grows in the coming years.

USB 2.0 has a data rate of up to 480 Mbits/sec., which is sufficient to deliver

video and other bandwidth-intensive content. It is also fast enough to be sus-

ceptible to jitter. Therefore the Compliance Suite for USB 2.0 Certification

includes jitter specifications. Any new platform that includes USB 2.0 (an

increasing number of consumer and office products) must meet these guide-

lines in order to qualify for the certification.

The USB 2.0 Specifications are just one example that demonstrates how a few

ps of timing inaccuracy can affect not only the technical functionality, but also

the market viability of a new product.

Analyzing Clock Jitter Using MATLAB
Application Note

www.tektronix.com/accessories/ 3

The Algorithm

The algorithm we’ll use is as follows:

Measure the timing of the edges

Derive the clocks using the edges and the symbol rate

Determine the average measured symbol rate

Calculate the error in the average measured symbol rate

Reconstruct the timing of the edges using the derived

clock and the average measured symbol rate

Calculate the jitter from the measured timing of the

edges and the reconstructed timing

Plot the jitter

Determining the Best Sample Interval

Before acquiring the waveform data, it is necessary to decide on the best sam-

ple interval to use. In trying to measure jitter, we must balance two things:

Capturing as many edges as possible (or desired)

Locating each edge as accurately as possible

To achieve this, we want to sample the data with enough resolution to locate

the edges, but not so much that we begin to limit the number of edges that we

can reasonably capture. There are two tradeoffs:

Record length versus the time it takes to process the data

The number of edges we can capture in a given record length versus the

accuracy of finding the edges

Let’s explore this last tradeoff. The following graph shows an edge sampled

with both three and five points on the rise time. Both pass through 0 at the

horizontal value of 5. So we’ll say that the edge occurs at 5.

Analyzing Clock Jitter Using MATLAB
Application Note

www.tektronix.com/accessories/4

Terminology

The clock jitter example will make use of the following

terms:

Table 1: Terminology used in the clock jitter problem

Term Meaning

Symbol Rate The frequency at which the communica-

tion system is sending data. (In RS232

this would be the baud rate.)

Sample Rate The frequency at which the oscilloscope

is sampling data (measured in

samples/second).

Sample Interval The time difference between samples

(measured in seconds/sample). The

oscilloscope user interface calls this

resolution. Mathematically the Sample

Interval = 1/ Sample Rate.

Threshold The voltage used to determine if a

voltage value is a logical zero (0) or a

logical one (1).

Edge A place where the waveform crosses

the threshold. We are interested in the

time when this occurs. Since an edge

usually occurs between samples, we

must use a technique called linear

interpolation to find it accurately.

Hysteresis Defines a guard band around the

threshold that is used to make the algo-

rithm less sensitive to small amounts of

noise. For each edge there must be at

least one point outside the guard band.

The next graph shows the situation with five points versus a single point on the

rise time. In this case, the line with a single point on the rise time passes

through 0 at the horizontal value of 5.3. The data is undersampled and this

undersampling has led to an error of 0.3. The result will look like jitter, but it’s

just an error in our measurement.

The final graph shows the situation with no points on the rise time. In this

case, the line with no points on the rise time passes through 0 at a horizontal

value of 4. The data is severely undersampled and this problem has led to an

error of –1. Again, the result will look like jitter, but it’s just an error introduced

by undersampling our data in the measurement.

From the above, we can see that a sample interval (horizontal resolution) that

gives us between three and five samples on the waveform rise time, will allow

us to accurately find the edges. Higher resolution will just limit the number of

edges in whatever record length we choose.

This first step is critical in assuring that the waveform acquisition and the subse-

quent analysis yield accurate results, since the error induced by undersampling

will be indistinguishable from the jitter present in the signal.

Having determined the sample interval (the sample rate setting to be used for the

acquisition), the waveform is captured using normal oscilloscope methodology.

Analyzing Clock Jitter Using MATLAB
Application Note

www.tektronix.com/accessories/ 5

The Clock Jitter Solution using MATLAB

Export the Waveform into a File
Appropriate for MATLAB

To export data stored in a TDS7000 oscilloscope, select menu bar mode, then

select File> Export Setup. The Export Setup dialog box appears. Select MATLAB

as the Data destination, channel 1 as the source, and check the box next to

Include waveform scale factors. Two files will be created. For the purposes of

this example, the file(s) will be named jitter5k.dat and jitter5k.hdr. The header

(.hdr) file includes four fields: the waveform record length, sample interval,

trigger location and trigger time offset.

Create the Jitter1 Function

The next step is to create a function that calls several sub-functions to solve

the clock jitter problem. Start up MATLAB, select the Path Browser and define

the path to the folder containing the jitter5k.dat and jitter5k.hdr files. Then

start the Editor/Debugger and enter the following instructions:

function rmsJitter = jitter1(file,symbolRate,threshold,hysteresis)

waveform = dlmread(strcat(file,’.dat’));

header = dlmread(strcat(file,’.hdr’));

sampleInterval = header(2);

The first input argument (file) is the name of the waveform files exported from

your oscilloscope. The first two assignment statements of this function read the

two exported files into the waveform and header arrays. Then the program

assigns a value to the sample interval used to collect the data (and imported

as the second element in the header array).

Later in this exercise, we’ll call the jitter1 function with the name of the

waveform file (jitter5k) and input values for the symbol rate, threshold and

hysteresis guard band.

Measure the Timing of the Edges

First we must define all the necessary functions to solve the problem. Because

of the way MATLAB works (every filename must match the function it contains),

each function will be saved under its own filename.

We want to measure the timing of the edges in the raw input waveform. To do

this, we’ll create a function in a separate “.m” file, then call that function from

the jitter1 function.

Analyzing Clock Jitter Using MATLAB
Application Note

www.tektronix.com/accessories/6

Here are a few points to remember
about MATLAB before you begin:

MATLAB is an interactive system whose basic data element

is an array that does not require dimensioning. This means

you can solve many technical problems in much less time

than it would take to write a program in a scalar non-inter-

active language such as C.

Note that many of the MATLAB Command Window instruc-

tion lines end with a semicolon (;). This causes MATLAB to

perform the calculation immediately without displaying any

output.

When MATLAB encounters a new variable name, it automati-

cally creates the variable and allocates an appropriate

amount of storage.
Note: Since this document is not meant to be a detailed tutorial on MATLAB itself, all

subsequent explanations are summaries of the major process steps, rather than
keystroke-by-keystroke procedures.

Create the measureEdgeTiming Function

We’ll define a function called measureEdgeTiming that accepts four input

arguments and returns one output argument (time). To create this function,

start a new file using the File > New > M-file command in the Editor/Debugger.

Type the following function definition:

function time = measureEdgeTiming(waveform,threshold,
hysteresis,sampleInterval)

A key to this algorithm is to ensure that we are out of the guard band

(hysteresis) before looking for an edge. The variable thresholdTest performs

this task. thresholdTest is a state variable with a range of “cases” from 0 to 4.

Starting a FOR loop that increments through the entire sampled waveform,

we will begin by finding the first voltage value that is above or below the

guard band.

Case 0 deals with the initial condition:

If the value of the sample is greater than the threshold plus the hysteresis,

thresholdTest is set to 2 to look for a negative crossing.

If the value of the sample is less than the threshold minus the hysteresis,

thresholdTest is set to 1 to look for a positive crossing.

If neither condition is met, thresholdTest remains zero and we continue to look

for a sample outside the guard band.

Case 1 tests for a sample that is greater than or equal to the threshold—a

positive edge. If the condition is met, we interpolate between two adjacent

samples to locate the edge. Then a test is performed to see if the second

sample is above the guard band:

If so, thresholdTest is set to 2 to search for a negative crossing.

If not, thresholdTest is set to 3 to search for a sample above the guard band

before searching for a negative crossing.

Case 2 searches for a sample that is less than or equal to the threshold—a

negative edge. If the condition is met, we interpolate between the two adjacent

samples to locate the edge. Then a test is performed to see if the second

sample is below the guard band.

If so, thresholdTest is set to 1 to search for a positive crossing.

If not, thresholdTest is set to 4 to search for a sample below the guard band

before searching for a positive crossing.

Case 3 checks to see if we are above the guard band again before searching

for a negative edge. This condition occurs when the second sample defining a

positive edge is less than the guard band.

Case 4 checks to see if we are below the guard band again before searching

for a positive edge. This condition occurs when the second sample defining a

negative edge is greater than the guard band.

When the FOR loop execution is complete, all of the waveform’s edges have

been found and converted to crossing times (Figure 2).

Analyzing Clock Jitter Using MATLAB
Application Note

www.tektronix.com/accessories/ 7

Figure 2: measureEdgeTiming function

Analyzing Clock Jitter Using MATLAB
Application Note

www.tektronix.com/accessories/8

Call the measureEdgeTiming Function

Now it’s time to place a call to the function. Start the Editor/Debugger, open

jitter1.m and add the following statement, creating an instruction that finds the

edges in the waveform:

measuredTime = measureEdgeTiming(waveform,threshold,

hysteresis, sampleInterval);

This statement calls the measureEdgeTiming function with four arguments and

assigns the returned result to the measuredTime array.

Derive the Clocks Between Edges

There is always n number of clocks between each pair of edges. By subtracting

the measured edge times between adjacent edges and then multiplying that

value by the supplied symbol rate, we get a non-integer value of the number

of clocks between edges. When we round the number to the nearest integer,

we get a value that we then add to the clocks’ array. The number stored in

this array is the total number of clocks since the first edge. To calculate the

number, create a FOR loop in the jitter1.m function

Calculate the Average Measured
Symbol Rate

Now we can find the best fit of the measured edges (in the measuredTime

array) and the derived clocks (in the clocks’ array) to a straight line. To do this,

we’ll use linear regression using MATLAB’s “polyfit” function. The formula for

a straight line is:

y = a + bx

where:

a = the intercept (the point where a line will intersect the y-axis)

b = the slope (the rate of change along the line)

The values of a and b can be produced by MATLAB’s “polyfit” function. We will

call the returned result coef (1) and coef (2), respectively. We want a formula

that will give us the derived time of an edge if we know the clock number.

So we use:

y = the time of an edge (to be stored in reconstructedTime)

x = the clock number of an edge (in clocks)

Use the slope formula to calculate the average measured symbol rate1 by

adding the following lines to the jitter1.m function:

coef = polyfit(clocks, measuredTime, 1);

a = coef(2);

b = coef(1);

measuredAverageSymbolRate = 1/b;

1 See Numerical Recipes: The Art of Scientific Computing, Cambridge Press, Chapter 14.2 for a full discussion of
the equations used here.

Calculate the Symbol Clock Error Rate

Given the average measured symbol rate, we can now calculate the symbol

clock error rate. We arrive at this result by subtracting the supplied symbol rate

from the average measured symbol rate and dividing the difference by the

symbol rate. To the jitter1.m function, add:

measuredSymbolRateError = (measuredAverageSymbolRate
–symbolRate)/symbolRate;

Graph the Waveform

Using the values calculated so far, MATLAB can graph the input waveform with

the symbol rate error displayed. We will graph only a portion of the waveform

—2000 samples out of 5000—so that we can see more detail in the graph. To

the jitter1.m function, add the instructions that plot measuredSymbolRateError.

The MATLAB plot function automatically opens a new Figure Window or uses

an existing one.

Reconstruct the Timing

The time of the first edge (reconstructedTime1) is the intercept of the best-fit

line to the y-axis. To reconstruct the timing of all the edges (and store them

in the reconstructedTime array), we apply the formula y = a + bx, using the

intercept a and slope b that we previously calculated.

reconstructedTime(1) = coef(2);

for index = 1:length(clocks)

reconstructedTime(index)=a + (b * clocks(index));

end

Calculate the Jitter

Next we solve for the jitter, calculated by finding the difference in timing

between the reconstructed edge timing and the measured edge timing. To

calculate this field, add the following to jitter1.m:

jitter = reconstructedTime - measuredTime;

Calculate the RMS Jitter

To calculate the RMS (root mean square) jitter, divide the normalized (average

or mean) jitter array2 by the square root of the length of the jitter array:

rmsJitter = norm(jitter)/sqrt(length(jitter));

Graph the Solution

We can instruct MATLAB to graph the results by adding the following

instructions to jitter1.m:

subplot(2,1,2);

plot(reconstructedTime,jitter);

title2 = strcat(‘RMS jitter: ‘, num2str (rmsJitter));

title(strcat(title2, ‘ uS’));

xlabel(‘time in seconds’);

ylabel(‘jitter in uS’);

Analyzing Clock Jitter Using MATLAB
Application Note

www.tektronix.com/accessories/ 9

2 The normalized jitter array is the square root of the sum of all elements in the jitter array squared.

The completed function is shown below. Be sure to save all the changes to the

jitter1 function before calling it (Figure 3).

Import the Waveform and Sample Interval,
and Input Values

Now we’ll import the waveform data from your oscilloscope into MATLAB. We’ll

call the jitter1 function with the name of the waveform data and header files

(jitter5k.dat and jitter5k.hdr) and input values for:

The symbol rate of the clock used to generate the data

The threshold used to determine if the waveform is a logic high (1) or low (0)

The hysteresis that establishes a guard band around the threshold in order to

reject noise in the acquired waveform

Call the jitter1 function using the following syntax:

jitter1 (‘jitter5k’, 5000, 0, .1)

MATLAB runs the jitter1 function, assigns the returned result as the value of

rmsjitter and, because the line doesn’t end with a semicolon (;), promptly

displays the answer in the Command Window.

Analyzing Clock Jitter Using MATLAB
Application Note

www.tektronix.com/accessories/10

Figure 3: The completed jitter1 function in MATLAB

More to the point, MATLAB also displays the two plotted graphs, as shown

below (Figure 4). The upper graph is the symbol error rate, while the lower line

is RMS Jitter.

Conclusion:

In this application note we have seen how the Tektronix TDS7000 Series

DPO and MATLAB work together to analyze waveform jitter. With its ability to

run MATLAB on the same self-contained platform as the waveform acquisition

tools, the TDS7000 Series is the tool of choice for critical jitter acquisition

and characterization.

Analyzing Clock Jitter Using MATLAB
Application Note

www.tektronix.com/accessories/ 11

Figure 4: The waveform and jitter graphs in MATLAB.

Analyzing Clock Jitter Using MATLAB
Application Note

www.tektronix.com/accessories/12

For more information
Tektronix maintains a comprehensive, constantly expanding collection of application
notes, technical briefs and other resources to help engineers working on the cutting
edge of technology.

Please visit “Resources For You” on our Web site at www.tektronix.com

¨

TDS7054

TDS7104

TDS7404

For other areas, contact: Tektronix, Inc. at 1 (503) 627-6877

Copyright © 2001, Tektronix, Inc. All rights reserved. Tektronix products are
covered by U.S. and foreign patents, issued and pending. Information in this
publication supersedes that in all previously published material. Specification
and price change privileges reserved. TEKTRONIX and TEK are registered
trademarks of Tektronix, Inc. All other trade names referenced are the
service marks, trademarks or registered trademarks of their respective
companies.
02/01 HMH/PG 55W-14593-0

www.tektronix.com

ASEAN Countries (65) 356-3900

Australia & New Zealand 61 (2) 9888-0100

Austria, Central Eastern Europe,

Greece, Turkey, Malta & Cyprus +43 2236 8092 0

Belgium +32 (2) 715 89 70

Brazil & South America 55 (11) 3741-8360

Canada 1 (800) 661-5625

Denmark +45 (44) 850 700

Finland +358 (9) 4783 400

France & North Africa +33 1 69 86 81 81

Germany +49 (221) 94 77 400

Hong Kong (852) 2585-6688

India (91) 80-2275577

Italy +39 (02) 25086 501

Japan (Sony/Tektronix Corporation) 81 (3) 3448-3111

Mexico, Central America & Caribbean 52 (5) 666-6333

The Netherlands +31 23 56 95555

Norway +47 22 07 07 00

People’s Republic of China 86 (10) 6235 1230

Republic of Korea 82 (2) 528-5299

South Africa (27 11) 651-5222

Spain & Portugal +34 91 372 6000

Sweden +46 8 477 65 00

Switzerland +41 (41) 729 36 40

Taiwan 886 (2) 2722-9622

United Kingdom & Eire +44 (0)1344 392000

USA 1 (800) 426-2200

